Please wait… 
Please wait while we process your order,
do not press the back button… 
Design 911 Design 911 supply Porsche parts, Porsche spares and Porsche accessories, to both retail and to the trade. Our Porsche product and accessory range includes brakes, exhausts, tyres, wheels and Porsche panels and interiors. https://design91.uk/images/schemaLogo.png https://design91.uk/images/schemaLogo.png +443456003478 https://design91.uk Facebook Instagram

SHW Performance

SHW Performance
About SHW Performance
SHW Performance manufacture premium monobloc brake discs made of cast iron and lightweight brake discs made of a combination of an iron friction ring and an aluminium pot.
DISPLAYING 17 to 32 (of 73 products)
1 2 3 4 >>
9P161560
Product Information
Product Information
SHW Performance Rear drilled monoblock brake disc rotor.

Brake disc Diameter Ø: 330 mm

Brake disc thickness: 34 mm
Brake Disc Type: internally vented, drilled

rear
Porsche 991.2 Carrera 2017-19
Porsche 992 Carrera 3.0L 2019>>
Not for cars with ceramic brake (PCCB)
Not for cars with central wheel lock

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

9P161560
99135240401
99135240301
9P1615602
9P1615601

The product you are viewing cross references to these numbers
99135240
Product Information
Product Information
SHW Performance Rear cross-drilled monoblock brake disc rotor.

Brake disc Diameter Ø: 330 mm

Brake disc thickness: 28 mm
Brake Disc Type: internally vented, corss-drilled


rear
Cars with central lock wheel
Not for cars with ceramic brake (PCCB)
Porsche 991.1 C2S 2012-16
Porsche 991.2 C2S 2017>> wheels
Porsche 991.1 C4S 2012-16
Porsche 991.2 C4S 2017>> wheels

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 


Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99135240
99135240302
99135240402

The product you are viewing cross references to these numbers
99735240
Product Information
Product Information
SHW Performance Rear drilled-dimpled monoblock brake disc rotor.

Brake disc Diameter Ø: 350mm

Brake disc thickness: 28 mm
Brake Disc Type: internally vented, drilled-dimpled

rear
CARS WITH OPTION I422 Turbo wheels 19", Central Lock (I422)
Porsche 997 MKI TURBO 2009>> (REAR)
Porsche 997 MKII TURBO 2009-13 (REAR)

Please note: 
Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99735240
99735240503
99735240603

The product you are viewing cross references to these numbers
99335204
Product Information
Product Information
SHW Performance Rear cross-drilled monoblock brake disc rotor.

Diameter Ø: 322 mm

Brake disc thickness: 328 mm
Brake Disc Type: internally vented, cross-drilled

rear
Porsche 911 (993) 1994-98 C4S REAR
Porsche 911 (993) 1994-98 C2S REAR
Porsche 911 (993) 1994-98 RS REAR
Porsche 911 (993) 1994-98 Turbo REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 



Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99335204
99335204500
99335204600

The product you are viewing cross references to these numbers
99335104
Product Information
Product Information
SHW Performance Front  drilled monoblock brake disc rotor.

Diameter Ø: 304 mm
Brake disc thickness: 32 mm
Brake Disc Type: internally vented, drilled

front
Porsche 911 (993) C2 / C4 / C2S 1994-98 - FRONT

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99335104
99335104301
99335104401

The product you are viewing cross references to these numbers
99335204102SHW
Product Information
Product Information
SHW Performance Rear cross-drilled monoblock brake disc rotor.
Sold each
, Each disc will fit Left or Right side.

Diameter Ø: 299 mm
Brake disc thickness: 24 mm
Brake Disc Type: internally vented, cross-drilled

rear
Porsche 911 (993) C2 / C4 / C2S 1994-98 - REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99335204102SHW
99335204102

The product you are viewing cross references to these numbers
97161560
Product Information
Product Information
SHW Performance Rear Slotted Light Weight brake disc rotor.

Brake Disc Diameter Ø: 380 mm
Brake Disc Thickness:  30 mm
Brake Disc Type: internally vented, two-part brake disc, Slotted

front
Porsche 971.1 Panamera 2017-21 - REAR
*** For cars with Short Wheel Base
(I1KC) For cars with 20-inch rear brake disc, brake caliper painted Red,
(2EG) For cars with 20-inch rear brake disc, brake caliper painted Red, NAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

97161560
971615601G
971615602G

The product you are viewing cross references to these numbers
99135240
Product Information
Product Information
SHW Performance Front drilled-dimpled monoblock brake disc rotor.

Diameter Ø: 330 mm

Brake disc thickness: 28 mm
Brake Disc Type: internally vented, drilled-dimpled


rear
Porsche 991 3.4L REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 



Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99135240
99135240100
99135240200

The product you are viewing cross references to these numbers
99135140
Product Information
Product Information
SHW Performance Front Drilled Light Weight brake disc rotor.

Brake Disc  Diameter Ø: 340 mm
Brake Disc Thickness:  34 mm
Brake Disc Type: internally vented, two-part brake disc, Drilled

front
For cars with Central wheel lock
For cars without ceramic disc
Porsche 991.1 C2S 2012-16 FRONT
Porsche 991.1 C4S 2012-16 FRONT

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

99135140
99135140302
99135140402
99134190100

The product you are viewing cross references to these numbers
98735240101SHW
Product Information
Product Information
SHW Performance Rear drilled monoblock brake disc rotor.

Diameter Ø: 299 mm

Brake disc thickness: 320 mm
Brake Disc Type: internally vented, drilled


rear
Porsche 987 MKI Boxster 2.7L 2005-08 REAR
Porsche 987 MKII Boxster 2.9L 2009-12 REAR
Porsche 981 Boxster 2.7L / 3.4L 2012-16 REAR
Porsche 718 (982) Boxster 2.0L / 2.5L 2017>> REAR

Porsche 987C MKI Cayman 2.7L 2005-08 REAR
Porsche 987C MKII Cayman 2.9L 2009-12 REAR
Porsche 981C Cayman 2.4L / 3.4L 2013-16 REAR
Porsche 718C (982C) Cayman 2.0L / 2.5L 2017>> REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

98735240101SHW
98735240101

The product you are viewing cross references to these numbers
98635240301SHW
Product Information
Product Information
SHW Performance Rear drilled monoblock brake disc rotor.

Diameter Ø: 299 mm

Brake disc thickness: 24 mm
Brake Disc Type: internally vented, drilled


rear
Boxster (986) S 1999-04 3.2L REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Please note: OE brake discs and brake pads are not stocked items and fall under special order terms.


Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

98635240301SHW
98635240301

The product you are viewing cross references to these numbers
98635240104SHW
Product Information
Product Information
SHW Performance Rear smooth monoblock brake disc rotor.
Fits rear left or right.  Sold as EACH

Brake Disc Ø: 292 mm
Br. Disc Thickness: 20,0 mm
Brake Disc Type: internally vented, Smooth

rear
Boxster (986) 1999-04 2.5/2.7L REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

98635240104SHW
98635240104

The product you are viewing cross references to these numbers
98635140105SHW
Product Information
Product Information
SHW Performance Front smooth monoblock brake disc rotor.

Diameter Ø: 298 mm

Brake disc thickness: 24 mm
Brake Disc Type: internally vented, smooth

front
Porsche 986 Boxster 1997-04 2.5/2.7L FRONT

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 

Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

98635140105SHW
98635140105

The product you are viewing cross references to these numbers
98135240
Product Information
Product Information
SHW Performance Rear drilled mono-block brake disc rotor.

Diameter Ø: 330 mm

Brake disc thickness: 28 mm
Brake Disc Type: internally vented, drilled

rear
*not for cars with ceramic brakes  
Porsche 981 Boxster Spyder 2016 REAR
Porsche 982 Boxster GTS 2017>> REAR
Porsche 982C Cayman GTS 2017>> REAR

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 


Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

98135240
98135240300
98135240400

The product you are viewing cross references to these numbers
98135140
Product Information
Product Information
SHW Performance Front drilled-dimpled monoblock brake disc rotor.

Diameter Ø: 315 mm

Brake disc thickness: 28 mm
Brake Disc Type: internally vented, drilled-dimpled

front
Porsche 981 Boxster 2.7L 2012>> FRONT
Porsche 981C Cayman 2.7L 2013>> FRONT

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 


Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

98135140
98135140101
98135140201

The product you are viewing cross references to these numbers
29861530
Product Information
Product Information
SHW Performance FRONT slotted monoblock brake disc rotor.

Brake Dis  Diameter Ø: 360 mm
Brake Disc Thickness: 26,0 mm
Brake Disc Type:  internally vented, slotted

front
Porsche 970 Panamera 3.6L V6 2WD
Porsche 970 Panamera 4 3.6L V6 4WD
Porsche 970 Panamera S 4.8L V8
Porsche 970 Panamera 4S 4.8L V8
Porsche 970 Panamera GTS 4.8L V8
Porsche 970 Panamera 3.0L Diesel
Porsche 970 Panamera 3.0L Hybrid

Not for cars with Ceramic brake (PCCB)
Not for Special model : Panamera 4 GTS

This product supersedes Porsche's old part numbers:
- 97035140300 (LEFT) / 97035140400 (RIGHT

Please note: Brake disc rotors are priced each.


SHW PERFORMANCE, one of the world's leading brake disc manufacturers supplying directly to OEM, with product featured as standard equipment on many of today's new performance vehicles. 

THE ONLY TRUE REPLACEMENT.
NOTHING LESS THAN A TRUE FACTORY EQUIVALENT

SHW PERFORMANCE produces both one and two piece, ventilated disc brake rotors to cover a wide range of vehicle applications.​The vehicle application automatically dictates which style, composition and type of disc brake rotor is available, as SHW only offer a genuine direct replacement for the factory supplied disc.​For lesser performance orientated vehicles, a ventilated monoblock disc brake rotor produced from cast iron will more than suffice. For vehicles placing greater demand on the needed stopping power, a lightweight, composite, fully floating two-piece design is often preferred (the style of which is referred commonly as a peg or pin drive system). 

PERFORMANCE UNDER PRESSURE.
CONSISTENT RELIABILITY AND PERFORMANCE UNDER THE MOST DEMANDING OF CONDITIONS

Quality is a key ingredient from which to guarantee long term repeated reliability. SHW products are built to carry the high expectations required by exacting OEM standards and exceed them where possible.

PATENTED DESIGN PIN-DRIVE SYSTEM.
FROM WEIGHT REDUCTION TO IMPROVED COOLING, DISCOVER THE BENEFITS OF THE SHW PIN-DRIVE BRAKE ROTOR SYSTEM

Innovation, sustainability, added value. Welcome to SHW's patented Pin-Drive system, a substantial step forward in the future of braking.​

SHW's Pin-Drive system carries many benefits when compared to conventional methods of disc brake rotor design. So, what is 'Pin-Drive' and why is it advantageous over a one-piece disc brake rotor?

​The Pin-Drive system is a two piece fully floating disc brake rotor. The friction ring is connected to the central aluminium rotor bell by means of stainless steel pins which are cast into the assembly during the manufacturing process. The purpose behind the design is to offer a range of advantages:​

 - Up to 5.5lbs of weight reduction (rotating and unsprung weight) per disc compared to Monoblock.
 - Reduced thermal strain thanks to the friction ring having more freedom to expand and contract.
 - Low brake fading properties.
 - Improved durability.
 - Enhanced brake comfort thanks to optimised thermal conditions.
 - Optimal curved vane design that maintains structural strength while improving noise dampening. 

UNPARALLELED COOLING ADVANTAGES.
MAINTAIN OPTIMUM BRAKING PERFORMANCE FOR LONGER WITH IMPROVED COOLING PROPERTIES.

As well as a reduction in unsprung weight and improved braking characteristics, SHW's Pin-Drive design also prides itself on offering unbeatable cooling advantages, just one of the reasons why it has become the first choice for many OEM's.

Unlike other brake manufacturers, SHW developed a PATENTED improvement of the disc construction by offsetting the pin connection of the friction ring to the aluminium disc bell away from the center to the edge, which results in huge cooling gains.

By offsetting the pin connection of the friction ring to the aluminium bell the cooling channels running centrally through the rotor see a huge increase in accessibility and cooler air flow. This advantageous design offers up to a 50% cooling advantage gain when compared to traditional designs.

Allowing a greater flow of air, heat generated on the surface of the friction ring (via the brake pads clamping down under braking) is carried away faster and more efficiently, dramatically reducing inner core and surface temperatures across the complete disc brake rotor. In addition, due to the unique patented design, further weight savings are achieved thanks to a shallow aluminium disc bell.

THE IMPORTANCE OF AIR FLOW.
WHEN AIR FLOW IS PARAMOUNT TO PERFORMANCE. THE LOWER THE OPERATING TEMPERATURES, THE HIGHER THE PERFORMANCE.

The cold air is traditionally fed via air ducts located either in the front bumper, or channeled through pathways on the underside of the vehicles under tray. As the cold air enters the rear of the disc bell, it passes through vanes between the two brake rotor faces. The cooler air helps to reduce temperatures from the very core of the brake disc by collecting heat and carrying it outwards, away from the brake disc assembly and eventually venting back out into the passing air flow found circulating the inner wheel. 


Related reference numbers
Related, superseded, cross reference or alternative numbers for comparison.

29861530
97035140300
97035140400
97035140301
97035140401
298615301B
298615302B

The product you are viewing cross references to these numbers
DISPLAYING 17 to 32 (of 73 products)
1 2 3 4 >>